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Large- and small-scale vortical motions in
a shear layer perturbed by tabs
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(Received 17 December 1997 and in revised form 8 October 1998)

The large- and small-scale vortical motions produced by ‘delta tabs’ in a two-stream
shear layer have been studied experimentally. An increase in mixing was observed
when the base of the triangular shaped tab was affixed to the trailing edge of the
splitter plate and the apex was pitched at some angle with respect to the flow
axis. Such an arrangement produced a pair of counter-rotating streamwise vortices.
Hot-wire measurements detailed the velocity, time-averaged vorticity (Ωx) and small-
scale turbulence features in the three-dimensional space downstream of the tabs. The
small-scale structures, whose scale corresponds to that of the peak in the dissipation
spectrum, were identified and counted using the peak-valley-counting technique. The
optimal pitch angle, θ, for a single tab and the optimal spanwise spacing, S , for a
multiple tab array were identified. Since the goal was to increase mixing, the optimal
tab configuration was determined from two properties of the flow field: (i) the large-
scale motions with the maximum Ωx, and (ii) the largest number of small-scale
motions in a given time period. The peak streamwise vorticity magnitude |Ωx max| was
found to have a unique relationship with the tab pitch angle. Furthermore, for all
cases examined, the overall small-scale population was found to correlate directly with
|Ωx max|. Both quantities peaked at θ ≈ ±45◦. It is interesting to note that the peak
magnitude of the corresponding circulation in the cross-sectional plane occurred
for θ ≈ ±90◦. For an array of tabs, the two quantities also depended on the tab
spacing. An array of contiguous tabs acted as a solid deflector producing the weakest
streamwise vortices and the least small-scale population. For the measurement range
covered, the optimal spacing was found to be S ≈ 1.5 tab widths.

1. Introduction
Mixing enhancement has many technological benefits and is, therefore, an area

of continuing research. Various control schemes have been examined in an effort to
increase mixing in different flows. A common strategy in these schemes has been to
manipulate the large-scale vortical motions indigenous to the shear region. Primarily,
these are the spanwise vortical structures that characterize all two-dimensional shear
layers. Another form of the large-scale structures, receiving renewed attention lately,
are the steady streamwise vortices, e.g. those produced by vortex generators. The large
structures, in any of these forms, play a crucial role in the dynamics of the shear
layer. They are responsible for the bulk of the entrainment and transfer of mass and
momentum across the shear region. Thus, an understanding of their dynamics and
interaction is critical for the implementation of any mixing enhancement scheme.

† Now with Dynacs Engineering Co., Inc. (Icing Research Branch, NASA Lewis).
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Enhancing the large-scale mixing, however, is only the first step. The ability to mix
at the small scales is equally critical. In jet engine applications, for example, a more
efficient small-scale mixing is expected to reduce noise via the elimination of ‘hot
spots’ as well as by shifting the energy to higher frequency bands. For reacting flows,
mixing at the small-scales is essential so that the molecules combine effectively. Thus,
obtaining a clear understanding of the dynamics of the small-scale structure, vis-à-vis
the large-scale structure dynamics, is also important.

In the present experimental study, large structures in the form of streamwise
vortex pairs are introduced in a two-stream layer using delta tabs. In several previous
experiments, tabs have proved to be effective in increasing overall mixing. For example,
in a comparative survey of jet mixing with various nozzle shapes, Zaman (1996) found
geometry involving delta tabs far exceeded the performance of other nozzle shapes.
The survey included a ‘lobed’ geometry as well as rectangular and elliptic nozzles for
both subsonic and supersonic flow regimes.

The present investigation is to advance the understanding of the effect of tabs on
the flow field. The objectives are stated in § 1.3. First, past studies on the effect of tabs
are reviewed in § 1.1, followed by a brief account of pertinent studies on small-scale
turbulent structures in § 1.2.

1.1. Effect of tabs on jets

Bradbury & Khadem (1975) were among the first to document the effect of tabs
in a low-speed jet. With square tabs placed normal to the flow at the nozzle exit,
they observed an accelerated centreline velocity decay and a profound distortion
of the velocity field in the cross-stream plane. They speculated that the azimuthal
vorticity had been significantly disrupted, and that this had the potential for noise
reduction. Ahuja & Brown (1989) saw this dramatic reduction in centreline velocity
for supersonic conditions as well. They verified the elimination of the screech tone
for underexpanded supersonic jets caused by the tabs (Tanna 1977), and speculated
that ‘though the axisymmetric structures are suppressed, other large-scale motions
are present’ which must be responsible for the phenomenal entrainment. Subsequent
researchers (e.g. Zaman, Reeder & Samimy 1994; Bohl & Foss 1996) have clearly
determined that the tab produces a pair of counter-rotating streamwise vortices. The
sense of rotation of the vortex pair is such that fluid from the centre of the tab base
flows towards its tip. The relative magnitude of the peak streamwise vorticity was
found to be about 20% of that of the peak azimuthal vorticity for a tabbed circular
jet at a Mach number of 0.3 (Zaman 1993).

Zaman (1993) and Zaman et al. (1994) surmised two possible sources of streamwise
vorticity for the flow over a tab (J. F. Foss first suggested these two sources, see also
Bohl & Foss 1996). The dominant source (source 1) comes from the ‘pressure hill’
formed upstream of the tab. The flow deceleration by the tab creates a pressure
hill, which together with the presence of the wall, produces the pair of counter-
rotating streamwise vortices. This mechanism is described mathematically by the
Navier–Stokes equation applied at the wall,
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where y and z are the lateral (normal to the wall) and spanwise coordinates, respec-
tively, and the substitution, ωx|y=0 = ∂w/∂y, has been made. The secondary source
(source 2), again owing to the pressure gradients on the tab’s surface, is the vorticity
shed from the sides of the tab. Initially, vorticity is shed parallel to the edge; as it con-
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vects downstream, it becomes reoriented by the velocity gradients in the shear layer.
Thus, if the tab is tilted downstream, vorticity from sources 1 and 2 add together,
improving the tab’s effectiveness (Zaman et al. 1994). In addition to the pressure
gradients which flux streamwise vorticity into the flow, the well-known ‘necklace’ or
‘horseshoe’ vortices due to boundary-layer reorientation can also be important in the
flow over a tab. Several researchers (Bohl & Foss 1996; Reeder & Samimy 1996)
have detected the cores of the necklace vortices. It should be noted that the sense of
rotation of the vortex pair from the pressure hill is always opposite to that of the
necklace vortex pair.

Several other observations regarding optimal tab placement and shape have been
made. Reeder & Zaman (1996) found that the tab is best placed at the trailing edge.
Upstream or detached settings interfere with the pressure hill source of vorticity.
Also, the tab height must exceed the boundary-layer thickness to generate streamwise
vorticity effectively. However, tabs with a much smaller height can produce noticeable
effects. In a chemically reacting, compressible, two-stream shear layer, Island, Urban
& Mungal (1998) observed a significant increase in product formation and thickening
of the shear layer when a tab with a height of only 5% of the boundary-layer
displacement thickness was placed at the trailing edge. After brief parametric studies,
both Zaman et al. (1994) and Island et al. (1998) found the optimal tab shape to be
triangular. In the usage of Zaman et al., the base of the tab was attached to the exit
edge of a nozzle and the apex tilted downstream at 45◦. This configuration not only
worked as effectively as a square tab placed normal to the flow but also incurred less
thrust penalty.

While most of the investigations on the effect of tabs have been conducted experi-
mentally, there have also been a few numerical studies (e.g. Grosch et al. 1997; Steffen,
Reddy & Zaman 1997). Steffen et al. compared numerical results with corresponding
experimental results and noted good agreement in terms of the vorticity field as well
as overall jet entrainment. These results lent further credence to the postulations made
on the basic flow dynamics as discussed above.

Most of the studies cited in the foregoing were conducted in free jets discharging
into quiescent surroundings. Ahuja (1993) and Carletti, Rogers & Parekh (1995) in-
vestigated the effect of the tabs for a circular jet with a cylindrical ejector surrounding
the jet. Both found an increased mixing within the ejector under the influence of the
tabs. However, a systematic fundamental study for the effect of tabs in the presence
of a co-flow has been lacking. Similarly, while most of the investigations addressed
overall mixing, only a few attempted to study the small-scale mixing. These are dis-
cussed in the next section. The deficiencies in the understanding of the effect of tabs
are discussed further in § 1.3.

1.2. Small-scale structures

General studies of streamwise vorticity interacting with spanwise vorticity (shear
layers) have repeatedly demonstrated locally elevated turbulence. For example, Huang
& Ho (1990), Bell & Metha (1990, 1993), Nygaard & Glezer (1991) and Gretta &

Smith (1993) found increased normal stresses, u2
i and Reynolds stresses uiuj , in the

core of the spanwise vortical structures and in the vicinity of the streamwise vortical
structures. Cetegen & Aguirre (1990) performed an analysis on a counter-rotating
pair of vortices in a flow with fast reaction chemistry. They found a direct relationship
between the molecular mixing and the vortex strength. That is, the stronger the vortex,
the greater the molecular mixing. Flow visualizations and concentration measurements
in water jets from both Zhang & Schneider (1995) and Hu et al. (1996) indicated
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that small-scale structures appeared earlier with a tab; i.e. the ‘mixing transition’
moved upstream. Zhang & Schneider also showed that an increase in the overall jet
spreading caused by a tab was accompanied by an increase in product formation.

Huang & Ho (1990) introduced the peak-valley-counting (PVC) technique to di-
rectly detect the small-scale structures believed to be responsible for the mixing
transition. This technique is described in § 2. They examined the concentration of
small-scale structures relative to the spanwise and streamwise large-scale structures
in a two-stream, initially laminar, shear layer. Small-scale transition occurred a short
distance downstream of the first spanwise vortex pairing location, and the small-scale
structures were concentrated in the centre of the time-averaged shear layer. However,
instead of being uniformly distributed in the span, concentrations were greatest near
the cores of the streamwise vorticity. They speculated that ‘the small-scale transition
is produced by the strain field of the merging (spanwise) vortices imposed on the
streamwise vortices, the strained streamwise vortices were unstable and originated the
random fine scale turbulence.’

Zohar & Ho (1996) demonstrated that the frequency of the small-scale eddies
detected by the PVC code matched the peak in the three-dimensional dissipation
spectrum. As an additional check, Foss (1994) found a nominally one-to-one corre-
lation between the small-scale population distribution and the distributions of the

dissipation terms, (∂ui/∂xj)2. This clearly indicated that the small-scale structures
under consideration were primarily responsible for the dissipation of turbulent ki-
netic energy. Zohar & Ho furthermore observed that increasing the two-dimensional
acoustic forcing level applied to the shear layer increased the small-scale populations
around the second spanwise vortex pairing location. Specifically, using phase-averaged
data over one spanwise vortex passage, they found that the small-scale eddies were
concentrated overwhelmingly (10:1) in the core of the spanwise vorticity, or ‘roller’
region and not in the ‘braid’ region, between rollers. The water channel experiments
of Nygaard & Glezer (1991) as well as the direct numerical simulations of Moser &
Rogers (1993) also suggested a similar distribution. These two studies showed that
the small-scale structures appeared first with the merging of the spanwise vorticity
and near the three-dimensional streamwise vortical structures (‘ribs’).

1.3. Objectives

As stated above, the purpose of the present experiment was to advance the under-
standing of the effect of tabs on the flow field within mixing layers. It was motivated
by a lack of clear understanding in several areas: (i) the effect of tabs on the small-
scale turbulent structures, (ii) the effect of the tab in the presence of a co-flow, and
(iii) the impact of the geometry of an array of tabs on the flow field. It was felt that an
experiment in the simplest of flows, namely, a two-stream planar mixing layer, would
be appropriate to address these effects. This led to the present experiment that was
designed to study the effect of parametric variation of a single tab and the geometry
of an array of tabs on the flow downstream. Detailed measurements of the streamwise
vortical structures and the concomitant small-scale structures were planned. Because
previous studies indicated that the dynamics of the tab-generated streamwise vortices
were essentially the same at different Mach numbers (Zaman et al. 1994), this research
was afforded several luxuries. Specifically, the speed was decreased to increase the
Kolmogorov scale, and the physical size of the tab was increased to allow higher probe
resolution. The effect of pitch angle of a single tab was studied first. The downstream
evolution of the flow field for an optimum angle case was addressed next. Finally,
in anticipation that most applications would involve an array of tabs, the optimal
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Figure 1. Schematic of (a) test section and splitter plate, tabs and coordinate system,
(b) side view, (c) plan view.

spacing between tabs was examined. The optimal condition was determined by both
a maximum small-scale population and a maximum magnitude of the time-averaged
streamwise vorticity.

2. Experimental facility and procedure
The flow field for the study was a two-stream plane mixing layer generated in a

51 cm× 76 cm low-speed wind tunnel. The open loop, induction-type (i.e. fan on the
downstream end) tunnel had less than 0.1% turbulence intensity in the test section.
To generate the mixing layer for this experiment, a 33 cm chord symmetric splitter
plate was installed that spanned the test section at midheight. The essential features
of the test section are shown schematically in figure 1 (a). The maximum thickness of
the plate was 1.27 cm and it tapered down to 0.05 cm at the trailing edge. This plate
sat on a frame (not shown in figure 1 (a) for clarity) that also housed two screens.
The resulting flow had uniform streams above and below the plate with a nominal
velocity ratio of 2:1. Through initial diagnostic experiments, a flap was placed at the
leading edge and tilted into the low-speed side to avoid laminar separation near the
leading edge of the upper (high-speed) surface.

The high-speed velocity was fixed at U1 = 9.32 m s−1, and the low-speed velocity at
U2 = 4.55 m s−1. The shear velocity, ∆U = U1 −U2, was used for data normalization.
The boundary-layer thicknesses at the trailing edge were 1.22 cm and 0.71 cm for the
high- and low-speed sides, respectively. The corresponding shape factors were 1.5
and 2.0, and the momentum thickness Reynolds numbers were Reθ = 932 and 193,
respectively. The boundary layers at the plate trailing edge were nominally turbulent
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on the upper surface and nominally laminar on the lower surface; the difference in
state explains a thicker boundary layer on the high-speed side. No identifiable peak
existed in the velocity spectra on either side.

The delta tab was a triangular piece of 0.025 cm thick metal shim with a base
width, b = 2.54 cm, and a height, h = 1.27 cm. The angle at the apex was 90◦. The
base was fixed to the splitter plate trailing edge and the apex was tilted into the
flow. The characteristic lengthscale for data normalization was the tab width, b. This
choice was based on the finding that the flow field was more sensitive to the width of
the tab than to its height (Zaman et al. 1994).

The coordinate system, shown in figure 1(b) and 1(c), had its origin at the trailing
edge of the splitter plate and at the symmetry plane. For the single tab case, this
was coincident with the tab centre. The side view in figure 1(b) illustrates how the
tab pitch angle, θ, was defined relative to the free-stream direction. For the multiple
tab case, the coordinate origin was located at the midpoint between the central two
tabs. The plan view of figure 1 (c) illustrates only the central two tabs of the multiple
tab case. During the multiple tab experiments, four tabs were spaced at a distance
S = S∗/b apart as measured between tab centres. The superscript (∗) is used to
indicate dimensional quantities.

The measurements were conducted using standard hot-wire anemometry. The ve-
locity and small-scale data were taken with a single straight wire; the streamwise
vorticity measurements were conducted with two X-wire arrays. Both the single hot-
wire (TSI 1260A-T1.5) and the two X-wires (TSI 1241-T1.5) were made of tungsten
with diameters of 4 µm. The single wire had a length of 1.25 mm with a flat frequency
response up to 30 kHz. The total sample time was 12.3 s. Stationarity of all parameters
considered was achieved after approximately 9 s.

Two X-wire arrays were used to acquire the data for the mean streamwise vorticity
which was estimated as Ωx = (∆W/∆Y − ∆V/∆Z). One array was placed in the ‘u, v’,
and the other in the ‘u, w’, orientation. The probes were spaced 2.64 cm apart in the
span and were traversed so that they sampled at the same points in space, but at
different times. The v and w data were corrected for the error introduced by the mean
shear and the finite separation of the sensors in each X-array according to standard
procedures (Bell & Metha 1993). The sampling rate for these data was 500 Hz. Further
description of the two-X-wire technique can be found in Zaman (1993). It should
be noted that vorticity amplitude approximated by this technique agreed well with
corresponding data obtained by two passes (one per orientation) of a single X-wire.
The single X-wire was yaw tested in the ‘u, w’-orientation. At 20◦ yaw, the measured
streamwise velocity overestimated the actual by 1.8%. The secondary velocity (w)
recorded a 4.4% increase. All data, therefore, were sampled downstream of X = 1.0,
where the average flow angles were less than 20◦.

Data were taken in cross-stream (Y , Z ) planes at several downstream locations.
Facility limitations prevented measurements downstream of X = 8.5. Data taken
in the transverse direction, Y , extended into the potential flow regions on either
side of the shear layer. For the single-wire measurements of velocity and small-scale
population, the step size was ∆Y = 0.1 in the shear region, and ∆Z = 0.125 to
0.250 behind the tab. For the streamwise vorticity measurements, the effect of grid
density was checked according to the method outlined by Zaman (1993). This involved
measurement of Ωx, in the region of peak streamwise vorticity, by line integration of
the velocities around a single grid. The grid size was decreased until the amplitude of
Ωx became independent of the grid size. Based on these preliminary studies, the data
were taken with the spacings, ∆Y = ∆Z = 0.13.
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Figure 2. Peak-valley-counting technique depicting the velocity trace and pulse train.

2.1. Peak-valley-counting technique

The peak-valley-counting (PVC) technique was designed to detect the fine-scale eddies
directly from a velocity trace. In the same manner that a passing large-scale coherent
structure leaves its signature on a velocity trace, a small-scale eddy – provided the
sensor resolutions are sufficient to measure it – can also leave a detectable signature
in the velocity time series. That is, the local extrema in the trace are the signatures of
the small-scale eddies. The PVC code constructs a pulse train to identify these local
peaks and valleys. Such a velocity trace and pulse train is shown in figure 2. See
Zohar & Ho (1996) for further details.

Several diagnostics may be performed once the pulse train has been established.
The small-scale population, N∗, is proportional to the sum of all the pulses. The time
between adjacent pulses is half the period of a fine-scale structure. A histogram of
these frequencies, or inverse periods, yields a fairly sharp distribution centred around
a ‘most probable frequency’. As will be shown (in figure 11), this peak frequency
matches the peak frequency of the pseudodissipation spectrum. For this paper, the
pseudodissipation spectrum is estimated from the measurable one-dimensional energy
spectrum, figure 11, and is defined as D(κ1) = 2ν

∫
κ2

1F11(κ1)dκ1, where κ1 = 2πf/U,

f is the frequency, and U is the mean velocity. The PVC thresholds for the five
filtering sequences necessary to distinguish between flow structure and noise were, in
fact, set by comparison with D(κ1). That is, hot-wire data recorded at various x and y
near the centre of the shear layer were processed through both the pseudodissipation
calculation and the PVC code. Once the thresholds were set, this procedure was
repeated at a higher velocity to check the robustness of the thresholds. Indeed, the
peaks of both curves shifted to the same higher frequency.

As stated earlier, application of the code requires sufficient frequency response
and spatial resolution of the sensor, as well as a sufficiently fast sampling rate to
describe the scale of interest. The PVC data were acquired with the straight wire at a
sampling rate of 20 kHz, fast enough to resolve the fine scales. An evaluation of the
data showed that the maximum frequency of the small-scale structures was 4 kHz,
which was well within the 30 kHz response of the wire. The dissipative eddy length
– as determined by Taylor’s hypothesis – to sensor length ratio was 1.38. Initial tests
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determined that the small-scale results remained unchanged for a faster digitizing rate
of 50 kHz.

3. Results
3.1. Single tab; angle variation

Experiments were conducted with a single tab pitched into both the high (θ > 0◦)
and low (θ < 0◦) speed sides. The specific values were: θ = 0◦, ±15◦, ±30◦, ±45◦,
±60◦, ±90◦, ±135◦. The data were sampled at a fixed downstream location, X = 4.0,
where the large-scale vortical motions had had a chance to mature but not diffuse.

For orientation purposes, mean streamwise velocity profiles at three spanwise
locations, U(Y ;Z), are presented in figure 3. The velocity, U = (U∗ −U2)/(U1 −U2),
was normalized so that its values varied from zero (0) in the low-speed free stream
to unity (1) in the high-speed free stream. The three profiles depicted in figure 3 were
taken for θ = 45◦ at Z = 0.0, 0.5 and 2.0. The profile at Z = 2.0 is similar to that of
the traditional two-dimensional mixing layer hyperbolic tangent profile. The profile
at the apex, Z = 0.0, is also similar, but is shifted in Y and is nominally 30% thinner
in both momentum and vorticity thicknesses. The profile at the base edge of the tab,
Z = 0.5, on the other hand, is dramatically different. Here, the time-averaged mean
velocity profile has a ‘bump’ in it; that is, a second, inviscidly unstable inflection point
has been added. As will be demonstrated later, peaks in both streamwise vorticity
and small-scale populations occur in the vicinity of this distortion.

A more comprehensive picture of the effect of the tab can be obtained from the
data on a cross-stream (Y , Z) plane. Figure 4 shows mean velocity contour plots
at various pitch angles, U(Y , Z; θ). The splitter plate trailing edge and the tab are
depicted with a dashed line for reference. The middle two contours bound the locus
of the half velocity points, that is, the centre of the time-averaged spanwise vorticity,
Ωz . The data for θ = 45◦ are shown in figure 4 (d). The mean velocity profile bump,
seen in figure 3, is now manifest by a ‘horseshoe’-shaped contour. This occurs for
θ = 60◦ (figure 4 c) and 45◦ (as well as for 30◦, the data for which are not included
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for brevity). In these cases, the bulk of the oncoming flow is merely deflected by the
tab, because the tab surface is angled downstream. At θ = 135◦ and 90◦, on the other
hand, the oncoming flow is clearly stagnated on the tab’s surface. In the latter cases
(figures 4 a and 4 b), the contour images do not exhibit a horseshoe shape and a more
significant portion of the flow is redirected in the spanwise direction. This ‘spanwise
jetting’ is particularly noticeable in the wide and shallow contour image of θ = 135◦.
At θ = 15◦ (figure 4 e), the projected tab height is less than 30% of the boundary-layer
thickness; a minimal effect is expected and observed. For all negative angles, where
the tab is pitched into the low-speed side, a different picture appears. The velocity
contours are almost cusped at Z = 0. These trends are further illuminated by an
examination of the streamwise vorticity, discussed next.

The corresponding mean streamwise vorticity data are shown in figure 5. The
streamwise vorticity is concentrated near the base of the tab. Solid and dotted
contour lines denote positive and negative values, respectively. In each case, a pair of
counter-rotating streamwise vortices with clearly identifiable cores, is evident. Recall
that the streamwise vorticity generated by the pressure hill mechanism directs the
flow from the tab base to the apex. The vortex pairs in all cases of figure 5, including
the change in sign of Ωx across θ = 0◦, indicate the dominance of this mechanism.

The motion induced by the vortex pair is obviously strongest between the cores.
Thus, the cusp-shaped mean velocity profiles for θ < 0◦ are a result of the high-
speed fluid being forced through the fairly narrow corridor between the cores. An
explanation for the horseshoe/no-horseshoe shape in the positive angle cases is also
apparent from the streamwise vorticity. The magnitude and compactness of the cores
for θ = 60◦ and 45◦, figure 5 (c, d), is sufficient to perceptibly induce high-speed fluid
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into the shear region laterally (in z). For θ = 135◦ and 90◦, figures 5 (a) and 5(b),
however, this effect is not manifest because the cores are weaker and further apart.

Note that the deepest penetration of the high-speed fluid into the low-speed side
occurs for θ = −45◦ (in figure 5 g), as opposed to −90◦ (in figure 5 h). While the
streamwise vorticity seems to be the dominant factor in this transport process, the
angled surface allows for the Coanda effect (see e.g. Schlichting 1979). Consideration
of the Coanda effect is what prompted Bohl & Foss (1996) to place two smaller
tabs on either side of a primary tab in a square jet; the primary tab tilted into the
jet stream and the secondary tabs tilted into the surroundings. This configuration
increased the flux of streamwise vorticity and the mass entrainment as compared to
the single, primary-tab case.

The small-scale populations corresponding to the data of figures 4 and 5 are
shown in figure 6. The profile, N∗(Y ), is Gaussian for a two-stream shear layer; the
time-averaged values peak in the centre of the shear layer (spanwise vorticity) and, of
course, fall to zero in the potential regions (Huang & Ho 1990; Foss 1994; Zohar & Ho
1996). The data in figure 6 are normalized by the maximum of the two-dimensional
profile (a fixed number that is determined from the measured value at Z = 2),
N(Y , Z; θ) = N∗(Y , Z; θ)/N∗2D max. Values greater than one, therefore, indicate the
increase due to the tab. For positive angles, two regions of peak N appear on either
side of the base of the tab. These maxima are in close proximity to, but not coincident
with, the streamwise vortex cores. For negative angles, a dramatically different image
emerges; a single peak region is centred behind the tab. The discrepancy in relative
location of the peak Ωx and N are shown in figure 7 for one positive and one negative
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Figure 6. Small-scale population contours, N(Y ,Z; θ) = 0.2, 0.4, 0.6 and 0.8,
for various angles, θ, as in figure 4.

angle. The peak small-scale populations, for all angles, consistently occur where the
more energetic high-speed fluid is introduced into the shear region. (The data in
figure 7 are further discussed later.) This convective transport is compatible with the
coherent vortex motions shown in figure 5. This observation is similar to that of
Huang & Ho (1990), but a distinction should be made. Based on observations with a
coarse grid, they had stated that ‘the random fine eddies are first detected in the cores
of the steamwise vortices’. Careful inspection of their figure 16 shows that the peaks
of small-scale population and the cores of streamwise vorticity are not exactly aligned.
The data of Foss (1994), taken in the same facility with a slightly finer spanwise grid,
more clearly show the lack of alignment. There is agreement on the crucial point,
and it is neatly stated in Huang & Ho’s conclusion: ‘the random fine eddies were
produced by the interactions of the merging spanwise structures and the streamwise
vortices’. As discussed in § 1.2, this is borne out by several other researchers who have
found that introducing streamwise vorticity into the spanwise vorticity of a shear layer
also hastens the small-scale transition (see Nygaard & Glezer 1991; Moser & Rogers
1993; Zhang & Schneider 1995; Zohar & Ho 1996). It seems clear that the addition
of streamwise vorticity to spanwise vorticity elevates the small-scale population. This
will be quantified next.

The effect of the tab pitch angle on the large-scale vortical motions is summarized
in figure 8. Here, for the left-hand side of the cross-sectional plane at X = 4, the peak
streamwise vorticity amplitude, Ωx max, and the circulation, ΓLHS , are plotted versus θ.
The circulation, incidentally, was calculated via both the line integral of velocity and
the area integral of vorticity; the calculations agreed within about 5%. Both plots are
antisymmetric about θ = 0◦. In fact, had the vorticity been normalized by the local
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vs. angle, θ, at X = 4.0.

free-stream velocity instead of the shear velocity, even the absolute magnitudes would
match. The observed trends are these: both |Ωx max| and |ΓLHS | increase with |θ| in the
range 0◦ < |θ| < 45◦. At |θ| = 45◦, |Ωx max| reaches its peak value. For 45◦ < |θ| < 90◦
|Ωx max| decreases while |ΓLHS | continues to increase until |θ| = 90◦. That is, while
the point measurement of core amplitude starts to decrease, the area integral of the
vorticity continues to increase. For |θ| > 90◦, both quantities decrease.

A qualitative explanation of the trends shown in figure 8 can be reasoned as follows.
As |θ| is increased from 0◦, the approach flow is increasingly deflected by the tab with
a corresponding increase in the amplitude of the pressure hill. The pressure build-up
upstream of the tab should approximate the dynamic pressure corresponding to the
velocity component normal to the tab surface. Thus, the pressure build-up reaches a
maximum at |θ| = 90◦, when the approach flow impacts normally to the tab surface.
Therefore, until 90◦, the strength of the source of streamwise vorticity from the
pressure hill (source 1) increases with |θ|. For |θ| > 90◦, the approach flow is still
stagnated by the tab (at Z = 0), and hence, the amplitude of the pressure hill remains
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unchanged. The notion of such pressure variation with θ is supported by the static
pressure data presented by Zaman et al. (1994). The data show a large increase in the
peak pressure amplitude as θ is increased from 45◦ to 90◦ but only a slight increase
as θ is increased from 90◦ to 135◦ (note that the reference for θ, and the geometry
of the tab at 90◦, are different in the cited work). Thus, with increasing |θ| until 90◦,
an increase in the amplitude of the pressure hill causes an increase in |ΓLHS |. For
|θ| > 90◦, however, streamwise vorticity from source 2 (i.e. vorticity shed from the
edges of the tab and reoriented downstream; see the reference cited above and the
discussion in § 1.1) is of opposite sign counteracting the vorticity from the pressure
hill. Introduction of vorticity of opposite sign is thought to be the main reason for
the decrease in the circulation at the larger angles. Thus, the peak in |ΓLHS | occurs at
|θ| = 90◦.

Vorticity from source 2 is also thought to be responsible for the occurrence of the
|Ωx max| peak at |θ| less than 90◦. At smaller angles, when the tab leans downstream,
the vorticity shed from the edges of the tab is reoriented into streamwise component
with relative ease by the velocity gradient. The reoriented vorticity reinforces the
vorticity from the pressure hill resulting in higher peak magnitudes. As |θ| approaches
90◦, much of the vorticity from source 2 not only takes a longer distance to reorient
itself but also is farther apart from the cores of the pressure hill vorticity. Thus, even
though the net circulation is larger at |θ| = 90◦, the distribution of Ωx over a larger
area results in a smaller |Ωx max|.

Of considerable interest and much speculation is the issue concerning the origin
of the small-scale structures. We have already observed with figures 6 and 7 that the
addition of streamwise vorticity elevates small-scale population. In this experiment,
by changing θ, the magnitude of the streamwise vorticity is changed incrementally for
a given approach spanwise vorticity. The resulting effect on the small-scale population
is further analysed. An overall measure of the small-scale population was formulated
for this purpose. The N(Y , Z) data were integrated over the data plane for each angle.
Specifically, the N(Y ) profiles were integrated first. To isolate the effect of the tab,
the amount

∫
N(Y )dY from the two-dimensional region was subtracted. Then these

values were integrated over the span. This final integrated value, Nint, is expressed as,

Nint =

∫ {∫
N(Y ,Z)dY −

∫
N2−D(Y )dY

}
dZ.

The result is shown in figure 9. The two peaks for Nint occur at θ ≈ ±60◦ close to the
|Ωx max| peak. The overall trend, as will be further supported by data presented in the
next sections, quite clearly show that an incremental change in θ changes both |Ωx|
and Nint in the same way. The number of small-scale structures generated is strongly
correlated to the magnitude of the streamwise vorticity.

While a full explanation for the correlation observed in the foregoing is beyond
the scope of the present experimental study, the following may be noted. Huang &
Ho (1990) had proposed that the increased strain rate due to the interaction of the
large-scale vortical motions (Ωz − Ωz , Ωz − Ωx) is responsible for generating the small-
scale eddies. The present results are consistent with this postulate. Another possible
mechanism for the increased number of small-scale eddies is the flow instability due to
the additional inflection points created by the tabs. Nygaard & Glezer (1991) identified
the inflection points in their U(Z) profile, caused by the ‘streamwise’ vorticity (which
had a definite Ωy component), as locally unstable regions of large shear. These
regions underwent rapid amplification, then broke down into small-scale motions. As
can be discerned from figure 4, the U(Z) profiles in the present experiment also have
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Figure 9. Integrated small-scale population, Nint, vs. angle, θ, at X = 4.0.

inflection points around the tab. The two locations of peak |∆U/∆Z | are depicted
with large dots in figure 7. The peak locations can be seen to occur close to the
locations of |Ωx max|. Furthermore, the maximum amplitude of |∆U/∆Z | occurred
for θ = 45◦ and 60◦ (the normalized central difference values were 2.15 and 2.11,
respectively.) Thus, the instability due to the additional inflection points (in the U(Z)
profile) as the cause for increased small-scale population is also supported by the
present results.

Additional insight into mixing transition and generation of small-scale structures
comes from several other investigations. Hu et al. (1996) observed that the streamwise
vorticity, Ωx, accelerates the instability of the primary vorticity, Ωz; then, viscous
diffusion accelerates the transfer of energy and vorticity to smaller scales. A spectral
approach analysing the energy transfer to smaller scales (higher wavenumbers) is
based on triadic interaction among scales (Domaradzki 1990; Yeung 1996). Coupling
between large and small-scale structures in physical space has also been analysed
through direct numerical simulation by Melander & Hussain (1993). Also notable in
this connection is the notion of the existence of a mixing transition Reynolds number
(Dimotakis 1993), mixing transition based on the number of vortex pairings (Karasso
& Mungal 1996), and the concept of ‘core dynamics instability’ of spanwise vortices
(Schoppa Hussain & Metcalfe 1995).

We conclude this section by noting, once again, that the optimum angle for
obtaining the largest small-scale population and strongest streamwise vorticity is in
the θ range of 45◦–60◦. From flow blockage (and hence, momentum or thrust loss)
considerations the smaller angle θ = 45◦ is used for the rest of the study.

3.2. Single tab; flow field evolution

The downstream evolution of the flow behind a single tab at θ = 45◦ was explored.
Data were sampled at four locations, X = 1.0, 2.0, 4.0 and 8.5. For this set of
experiments, the data were taken over a smaller window. The mean velocity con-
tours, U(Y , Z; X) are shown in figures 10 (a)–10 (d). Corresponding distributions of
Ωx(Y , Z; X) and N(Y , Z; X) are shown in figures 10 (e)–10(h) and figures 10 (i)–10(l),
respectively. Behind the tab apex at X = 1.0, figure 10 (a), the shear is high. A close
inspection should reveal the still present wake (dotted contour) near the tab apex. The
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Figure 10. Downstream evolution of U (in (a)–(d)), Ωx (in (e)–(h)) and N (in (i)–(l)) for a single
tab at θ = 45◦. X = 1.0 (a, e, i); 2.0 (b, f, j); 4.0 (c, g, k); 8.5 (d, h, l).

contour lines are essentially parallel to the tab and splitter plate trailing edges. The
streamwise vorticity is most intense at this most upstream location, figure 10 (e). There
is even a hint of the necklace vorticity (far right in figure 10 (e) which has a sense
counter to the pressure hill vorticity (Bohl & Foss 1996). At X = 2.0, figure 10 (b), the
mean velocity distortion caused by the tab has grown more in Y than in Z . This is
expected because of the motion induced by the streamwise vorticity, figure 10 (f). The
horseshoe pattern in the mean velocity distribution appears by X = 4.0 (figure 10 c),
and persists through X = 8.5 (figure 10 d).

It is clear that the streamwise vorticity persisted at the farthest X (figure 10 h).
At all X, the relative strength of the streamwise vorticity remained nominally con-
stant at 80% of the spanwise vorticity, as estimated from ∆U/∆Y . In other words,
Ωx max/Ωz max = O(1). This is in contrast to the effect of the tab with a circular jet
issuing into quiescent surroundings for which the relative strength ratio was only
20% (Zaman 1993). This difference is believed to be primarily due to the presence of
the co-flow. The streamwise vorticity generated by the tab placed in the higher-speed
stream should remain the same; addition of the co-flow reduces the amplitude of the
spanwise vorticity. Thus, the ratio of the amplitude Ωx max/Ωz max is increased.

The small-scale populations in figures 10 (i)–10 (l), as before, are normalized by the
peak two-dimensional population. The peak two-dimensional value at each X location
is used for normalizing the respective data, N(Y , Z; X) = N∗(Y , Z; X)/N∗2D max(X).
Thus, the normalization accounts for the growth of the small-scale population with
increasing X. The data in figures 10 (i)–10 (l) illustrate that the increased population
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Figure 11. Comparison of small-scale characteristics at cross-hair locations identified
in figure 10 (k): (a) PDF of frequencies, (b) pseudodissipation spectra.

occurs near the cores of the streamwise vortex for all X. It should be apparent that
the inferences made from the data of figure 7 should be valid for all X.

The tab also altered the frequency characteristics of the fine-scale eddies. In order
to illustrate this, data from two points on the X = 4.0 plane are compared. The
locations are marked with cross-hairs in figure 10 (k); one is at the location of peak
small-scale population, Z = 0.75, the other is at the location of maximum population
in the two-dimensional region at Z = 2.0. The histograms of the small-scale frequency
and dissipation spectrum, determined from pulse trains similar to that in figure 2, are
shown in figure 11. The most probable frequency in the two-dimensional (Z = 2.0)
region is 3.1 kHz (log(frequency) = 3.49). At the base edge of the tab, it increases to
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Figure 12. Turbulence characteristics at X = 4.0 and θ = 45◦, (a) u′, (b) u′v′ and u′w′. Contour
increment is 0.04 in (a) and 0.004 in (b) and (c).

4.2 kHz (log(frequency) = 3.62). These values are confirmed by the one-dimensional
pseudodissipation spectra (see the discussion in § 2.1). Thus, the tab not only generated
more small scales but it also made them smaller.

Additional turbulence quantities are shown in figure 12. The pattern of contours
for the streamwise r.m.s. velocity, u′, presented in figure 12 (a), is representative of
both secondary r.m.s. velocities, v′ and w′, and of all X locations. In all of these
maps, the region of peak r.m.s. velocity occurs not near the location of maximum
small-scale population, but where the shear is highest. Recall that the PVC technique
filters out all but the dissipative eddies, whereas the r.m.s. calculation includes all
scales. Referring to the mean velocity profiles in figure 3, the r.m.s. velocity can be
seen to peak at the main shear-layer inflection-point. The small-scale population, on
the other hand, peaks near the bump in the mean velocity profile produced by the
tab.

The time-averaged Reynolds stresses, u′v′ and u′w′ are shown in figures 12 (b) and
12 (c), respectively. As expected for a mixing layer, the u′v′ is negative in the shear
regions, and the u′w′ is aligned with and opposite in sign to the streamwise vorticity
(Bell & Metha 1993; Foss 1994). The fact that the two stress terms have nominally
the same magnitude further delineates the effect of the tab on the flow field. Recall
that the component vorticities had nearly the same magnitude, Ωx max/Ωz max = O(1).
The positive region of u′v′ (figure 12 b) occurs with the counter-gradient of U(Y ),
seen in figure 3. This positive region is first evident at X = 2.0 and persists beyond
X = 8.5, as does the mean velocity bump. While the streamwise vorticity is most
intense at X = 1.0, its effect on the flow field has not yet been realized in terms of
substantial momentum transfer. Once the effect is realized, the pattern of the flow field
remains similar thereafter within the measurement range covered. Both production
terms, P = −uiuj(∂Ui/∂xj), remain positive everywhere; the energy transfer is always
from the mean to the turbulent motions.

3.3. Multiple tabs

The final issue addressed in this paper is the effect of spacing, S , for a multiple tab
array. Four tabs at θ = 45◦ were investigated for this part of the study. Figure 13
shows a window of the U(Y ,Z; S) contour plots at two cross-stream planes, X = 4.0
and 7.5. A larger ‘two-dimensional’ region was needed for the multiple tab experiment,
this restricted the choice of the farthest downstream location to X 6 7.5. Data are
shown in figure 13 for four spacings, S = 3.0, 1.5, 1.25 and 1.0. The central two tabs
are always shown; they also depict the spacing.

For S = 3.0, the tabs behave as if they are isolated within the measurement
domain. This can be seen by comparing the mean velocity contours with those for the
isolated tab: figure 13 (a) with figures 4 (d) and 10 (c) for X = 4.0, and figure 13 (e)
with figure 10 (d) for X ≈ 8. The deflection behind the tab appears the same, as
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Figure 13. Mean velocity contours, U(Y ,Z; S) = 0.2, 0.4, 0.6 and 0.8, at various separations, S .
For X = 4.0: (a) S = 3.0, (b) 1.5, (c) 1.25, (d) 1.0. For X = 7.5: (e) S = 3.0, (f) 1.5, (g) 1.25, (h)1.0.

does the nominally two-dimensional region away from the tab. However, there are
perceptible differences. The largest difference is in the ‘drop’ of the two-dimensional
region between tabs. This lowering of the shear layer is a result of the induced motion
of the pair of streamwise vortices that span the two-dimensional region in the multiple
tab case (figures 13 a and 13 e). In the single tab case on the other hand, there is only
one streamwise vortex on one edge of the two-dimensional region (figures 10 c and
10 d).

Data taken at S = 2.0, not shown for brevity, are similar to those at S = 3.0; a
distinct two-dimensional region exists. This is no longer the case for S = 1.5 as shown
in figures 13 (b) and 13 (f). Although the location of the distorted contours and the
two-dimensional region have not changed substantially at X = 4.0, the shear layer has
been displaced upward at X = 7.5. For the closest spacing, S = 1.0, the centre of the
shear layer was displaced substantially toward the high-speed side (figures 13 d and
13 h). This rise is apparently caused by the ‘vectoring’ effect of the tabs. The solidity
of the array at the smallest spacing is sufficient to make it act like a solid deflector.
It can be observed from the data of figure 13 that this flow vectoring increases as S
decreases and as X increases.

The streamwise vorticity contours, Ωx(Y , Z; S), are shown in figure 14. The contour
window has been widened to include the flow field outside of the tab array. In each
of figures 14 (a) and 14 (b), approximately three vortex pairs are captured within
the measurement domain. The uniformity in the distribution and magnitudes of the
vortices for S = 3.0, shown in figures 14 (a) and 14 (e), confirms the weakness of the
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Figure 14. Streamwise vorticity contours, Ωx(Y ,Z; S), at various separations, S , as in figure 13. The
minimum magnitude shown is 0.1; the increment is 0.1. Dotted contours denote negative values.

flow interaction between tabs at this spacing. In figure 14 (b), for S = 1.5, X = 4.0,
the core magnitudes remained nominally the same as for S = 3.0, however, there is a
slight spanwise variation, i.e., the outermost positive vortex core is stronger than the
inner positive cores. This trend is accentuated with increasing distance and decreasing
spacing. In the limit, S = 1.0, X = 7.5, (figure 14 h), the outside vortex is nominally
seven times more intense than the inner vortices. Continuing with the ‘solid deflector’
analogy, the array of tabs may be thought of as acting like a single tab. The outer
vortex is then a component of the counter-rotating vortex pair from that ‘single’
tab. The corresponding small-scale populations, N(Y , Z; S) are shown in figure 15.
Data are shown only for X = 4 which are deemed sufficient to illustrate the essential
trends. Again, data for the largest spacing are similar to that for the isolated tab
case, compare figure 15 (a) with figure 10 (k). At the intermediate spacings, the peak
population increases somewhat near the base of the tab. These differences are not
easily discernible from the contour plots, and are further analysed in the following.

The momentum thickness, δθ , was calculated from the mean velocity profiles at
each Z location (figure 13). Averages, δθ , taken over Z ∈ [− 1

2
S, 1

2
S
]

are listed in

table 1. As can be seen, any tab configuration nearly doubled δθ compared to the
unperturbed case. According to this thickness measure, the ‘best’ case is S ≈ 1.5. Of
course, the thickening of the shear layer is an indication of increased entrainment. The
peak amplitudes of the streamwise vortex pairs from the inner two tabs (figure 14)
were averaged, and also listed in table 1 as Ωx max. This measure indicates that the
wider spacings are advantageous so that vorticity from one tab does not interfere or
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for X = 4.0 only.

S δθ Ωx max Nint

No tabs 0.08 –(0)– 0.02
3.00 0.14 1.23 —
2.00 0.18 — 0.24
1.50 0.18 1.23 0.25
1.25 0.18 1.10 0.22
1.00 0.16 0.62 0.19

Table 1. Comparison of average momentum thickness, δθ , peak streamwise vorticity magnitude,
Ωx max and integrated small-scale population, Nint, for various spacings, S , at X = 4.0.

annihilate that from its neighbour. Table 1 also lists Nint averaged over Z ∈ [0, 1
2
S
]
.

By definition, the value of Nint for the no-tab case should be identically zero (0); the
non-zero value is an indication of the error, which comes primarily from the tails
of the integrand. The value of Nint is not shown for S = 3 because of erroneous
contribution from the long two-dimensional region; for S = 2 only single-wire data
were obtained, thus, Ωx max is not available; and for the no-tab case, Ωx was not
measured and presumed to be zero. The ‘mixing metrics’ outlined in table 1 do not
readily suggest an obvious optimal spacing. However, considering all parameters, the
most effective spacing is inferred to be in the range, S ≈ 1.5.
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Figure 16. Integrated small-scale population, Nint, vs. peak streamwise vorticity, Ωx max,
for all θ > 0 cases.

We have seen before that the overall small-scale population is strongly correlated
with the amplitude of streamwise vorticity. This trend is also reflected in the measure-
ments for the multiple tab array. Recall that the outer-most vortex in the multiple-tab
array was stronger than the inner vortices. For example, for S = 1 at X = 4 (figure 14)
the peak Ωx in the outer vortex was nominally three times the corresponding peak
values in the inner ones. The magnitude of Nint was also found to be nominally
three times larger in the outer vortex region than in the inner vortices. This trend
is substantiated in figure 16, where Nint versus Ωx max is plotted for all cases studied
including the outer vortices in the multiple-tab array. Most of the data fall within a
wedge, clearly showing that the more intense the streamwise vorticity the greater the
overall small-scale population.

4. Concluding remarks
The influence of an array of delta tabs on the large- and small-scale mixing

characteristics in a 2:1 velocity ratio shear layer was studied experimentally. The
objective was to determine the optimal tab configuration for the maximum mixing as
determined by both time-averaged vorticity magnitudes and small-scale populations.
Two parameters, the pitch angle, θ, for a single tab and the spanwise spacing, S , for
an array, were varied.

The magnitude of the circulation generated by a single tab, on either side of its
symmetry plane, was found to vary directly with variation of the pitch angle |θ|. The
maximum in the circulation occurred when the tab was placed normal to the flow
(|θ| = 90◦). The streamwise vorticity, however, was more concentrated, and hence,
its peak magnitude (|Ωx max|) was the largest when the apex of the tab was tilted
downstream at |θ| ≈ 45◦. The integrated small-scale population (Nint) was also found
to vary with |θ|. The maximum in Nint occurred at |θ| ≈ 60◦, at approximately the
condition where |Ωx max| peaked. For an array of tabs, the spacing between tabs (S)
affected the downstream flow. Within the measurement domain (X ≈ 8), the tabs
acted as if isolated for S = 3. With contiguous tabs (S = 1), on the other hand, the
array acted as a solid deflector. In the latter case, the streamwise vorticity magnitude,
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as well as the small-scale population, were the smallest directly downstream of the
array. The streamwise vorticity distribution, however, rearranged such that the two
vortices on either end were strengthened. It was as if the array acted as a single,
wide tab. The small-scale population in the outer vortex region was found to be
proportionately larger. The optimum spacing, based on the largest average thickness
of the mixing layer, the strongest streamwise vorticity magnitude, as well as the largest
small-scale population, was inferred to be S ≈ 1.5.

Perhaps the most significant result obtained in this investigation is the relationship
between peak streamwise vorticity (Ωx max) and the small-scale population (Nint). For
all cases surveyed, there was a direct correlation; the larger the Ωx max, the larger the
Nint. The location of peak small-scale population, N, occurred in the centre of the
shear layer, and on the ‘high-speed’ side of the Ωx core, i.e. where the high-speed fluid
entered the shear region. The location of peak r.m.s. velocities, on the other hand,
did not coincide with that of peak N. The r.m.s. peaks occurred in regions where the
shear was maximum. At locations where the small-scale population was concentrated,
the turbulent structures also shifted to higher frequencies. The tab not only generated
more small-scale structures, but it made them smaller as well.

The authors are indebted to Professor John F. Foss of Michigan State University
for valuable inputs in this research as well as for a review of the manuscript. The first
author is thankful to the NRC/NASA post-doctoral fellowship program for support
during the course of this work.
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